[スポンサーリンク]

odos 有機反応データベース

シリル系保護基 Silyl Protective Group

[スポンサーリンク]

アルコール→有機金属化合物

 

概要

  • シリルエーテルは、アルコールの保護に有効である。研究室規模の精密合成では、必ずといっていいほど用いられる。
  • 3つの置換基R’は2つ以上同じものが用いられる。全て異なるとケイ素原子が不斉中心となってしまい、ジアステレオマーの取り扱いが面倒なためである。
  • TBS、TIPS、TBDPS基は立体的にかさ高いため、二級・三級アルコール存在下に一級アルコールのみを選択的に保護することが可能である。

基本文献

Review

開発の歴史

アルコールのシリル化剤として用いたのは米国のE. J. Coreyがはじめてである。1972年にTBSClを塩基としてイミダゾール存在下DMF溶媒中アルコールと反応させると収率よくシリル化体が得られることを発見した。さらにテトラブチルアンモニウムフロリド(TBAF)により除去可能であることも示した。現在ではもっとも頻繁に用いられる保護基の1つとなっている。

 

反応機構

1. 保護
ケイ素化学の常として、置換反応は5配位中間体を経由して進行する。脱離基(最も電気陰性な置換基)がアピカル位を占めるよう擬回転を起こしてから、脱離が起こる。
oh-si-3.gif
2.脱保護
保護の場合と同様、5配位中間体を経由して進行する。酸性条件であっても同様である。シリルカチオンは不安定なため、炭素置換におけるいわゆるSN1経路をとることはない。フッ素源で脱保護される駆動力は、強いSi-F結合形成による(Si-F結合はSi-O結合よりもおよそ30kcal/molほど強い)。
oh-si-4.gif

反応例

  • 保護・脱保護の典型例[1] oh-si-5.gif

 

  • NaHを塩基として用いるとジオールのmono-Protectionが効率よく行える。[2] oh-si-1.gif

 

  • ヨウ素触媒を用いるTMS保護[3]PG_silyl_7.gif

 

  • Si-BEZAを用いる保護[4]:三級アルコールのシリル保護ができる穏和な条件。 PG_silyl_8.gif

 

  • トリスペンタフルオロフェニルボランを用いたシリルエーテル合成[5]:官能基受容性の高さは勿論のこと、混み合ったアルコールを短時間で効果的に保護できる。 PG_silyl_9.gif
    PG_silyl_10.gif

 

  • より嵩高いシリル保護基BIBS[7]:Di-tert-butylisobutylsilyl基は最も嵩高いシリル基である。TIPSよりも1300倍塩基に強い。

2016-01-29_09-25-56

  • ケイ素ケイ素結合をもつトリス(トリアルキル)シリル基(スーパーシリル基)[8]:カルボン酸の保護基として用いることができる。例えば、トリス(トリエチル)シリル基は非常に嵩高いためカルボニル基に求核攻撃が進行しない。

2016-01-29_11-16-17

 

実験手順

 

PG_silyl_11.gif
アルコール(4.40g, 13.6 mmol)をDMF(90 mL)に溶解し、0℃にてイミダゾール(3.88g, 56.9 mmol) とクロロt-ブチルジメチルシラン(4.09g, 27.1 mmol)を加える。室温に昇温し,16時間撹拌する。十分量の水を加えて反応を停止し、水相を酢酸エチルで3回抽出する。有機相を硫酸マグネシウムで乾燥、濾過後濃縮、残渣をカラムクロマトグラフィ(ヘキサン/酢酸エチル=50/1)にて精製。目的物を黄色液体として得る(99%収率)。[6]

※ R’3SiCl/イミダゾールまたはR’3SiOTf/2,6-ルチジンの条件を用いることで、高収率でシリルエーテルを得ることができる。
後者のほうが反応性が高く、低反応性である二級、三級アルコールの保護目的に適している。
※ 脱保護は酸性条件下加水分解(AcOH-THF-H2O etc)あるいはフッ化物イオン(TBAF etc)による方法が一般的である。後者は強力なSi-F結合形成を駆動力とする。

 

実験のコツ・テクニック

※DMFを溶媒として使った際は、クエンチ時に多量の水で薄めた後、ヘキサン(or石油エーテル)/酢酸エチル 混合溶媒系で抽出すると良い。DMFが有機相に来にくくなり、抽出が楽になる。

※ 以下に良く使われる保護基を列挙しておく。TBSが一般的にFirst Choiceとして用いられるが、その他もよく使われている。TMS基はかなり外れやすいため、3級アルコールなどのかさ高いアルコールの保護、もしくは一時的保護目的以外では用いられることは少ない。
PG_silyl_2.gif

※ 酸性条件下での安定性はTMS(1)<TES(64)<TBS(20,000)<TIPS(700,000)<TBDPS(5,000,000)であり、塩基性条件では、TMS(1)<TES(10-100)<TBS, TBDPS(20,000)<TIPS(100,000)である(括弧内の数値はTMSを1とした際の強さを表す)フッ化物イオンに対する安定性はTMS<TES<TIPS<TBS<TBDPSの順である。

2016-01-29_09-14-28

塩基および酸性メタノール溶液中のシリルエーテルの半減期

2016-01-29_09-14-45

TBAF, HClO4を作用させた場合のシリルエーテルの半減期

※ TBAF条件での脱保護後に生じるアンモニウムアルコキシドは強塩基として働くので、塩基に弱い化合物には用いることが出来ない。緩衝目的で酢酸を加えたり、さらに温和な条件(HF・Py、3HF・Et3Nなど)を試す必要がある。

 

参考文献

  1. Oguri, H.; Hishiyama, S.; Oishi, T.;Hirama, M. Synlett 1995, 1252. DOI: 10.1055/s-1995-5259
  2. McDougal, P. G.; Rico, J. G.; Oh, Y.; Condon, B. D. J. Org. Chem. 1986, 51, 3388. DOI: 10.1021/jo00367a033
  3. Karimi, B.; Golshani, B. J. Org. Chem. 200065, 7228. DOI: 10.1021/jo005519s
  4. Misaki, T.; Kurihara, M.; Tanabe, Y.; Chem. Commun., 2001, 2478. doi:10.1039/b107447b
  5. Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem. 1999, 64, 4887. doi:10.1021/jo9903003
  6. Panek, J. S. et al. J. Org. Chem. 2009, 74, 1897. DOI: 10.1021/jo802269q
  7. Liang, H.; Corey, E. J. Org. Lett. 201113, 4120. DOI:10.1021/ol201640y
  8. tan, J.; Akakura, M.; Yamamoto, H. Angew. Chem. Int. Ed. 2013, 52, 7198. DOI:10.1002/anie.201300102
     

 

関連反応

 

関連書籍

Greene's Protective Groups in Organic Synthesis (English Edition)

Greene's Protective Groups in Organic Synthesis (English Edition)

Wuts, Peter G. M.
¥13,547(as of 04/16 21:11)
Release date: 2014/08/08
Amazon product information

 

外部リンク

関連記事

  1. ニーメントウスキー キノリン/キナゾリン合成 Niementow…
  2. ワーグナー・メーヤワイン転位 Wagner-Meerwein R…
  3. レフォルマトスキー反応 Reformatsky Reaction…
  4. ガブリエルアミン合成 Gabriel Amine Synthes…
  5. 水素化リチウムアルミニウム Lithium Alminum Hy…
  6. N-カルバモイル化-脱アルキル化 N-carbamoylatio…
  7. 椎名マクロラクトン化 Shiina Macrolactoniza…
  8. ベンジルオキシカルボニル保護基 Cbz(Z) Protectin…

注目情報

ピックアップ記事

  1. 第7回HOPEミーティング 参加者募集!!
  2. 砂糖水からモルヒネ?
  3. 【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ
  4. 炭素をつなげる王道反応:アルドール反応 (3)
  5. 免疫不応答の抗原抗体反応を利用できるハプテン標識化試薬
  6. 文献管理のキラーアプリとなるか? 「ReadCube」
  7. カンファー(camphor)
  8. オーヴァーマン転位 Overman Rearrangement
  9. 未来を切り拓く創薬DX:多角的な視点から探る最新トレンド
  10. ケミストリ・ソングス【Part 2】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー